A lander-based hydroacoustic swath system, GasQuant, was deployed in an intensely bubbling seep area at the shelf west of the Crimea Peninsula, Black Sea. With its horizontally oriented swath (21 beams, 63° swath angle, 180 kHz) GasQuant operates in a sonar-like mode and monitors bubbles remotely, exploiting their strong backscattering when crossing the swath. All active seep spots were monitored simultaneously within the covered area (2075 m2). Even applying simple processing and visualization techniques (moving average for filtering, FFT for spectrum analyses; swath and trace plots) identified 17 seeps of different activity patterns that have been grouped as follows: (1) sporadically active with one to a few long bursts (up to 18 min) or randomly occurring short bursts (<200 bursts and active for <5% of the observation time); (2) regularly active seeps showing mainly short bursts of less than one minute but also longer burst of a few minutes (200–350 bursts and 5 to 20% active); (3) frequently active spots with sometimes very periodic bubble release (>350 bursts or >20% active). Studying the bubble release variability of single seeps and of the entire area allows speculation about the external and internal processes that modulate the bubble release. In the study area none of the 17 seeps was found to be permanently active. Only one was active for 75% and another one for 45% of the time monitored. The rest only released bubbles during less than 20% of the time with an overall average of only 12%. This would have strong implications for flux extrapolations if these were based on very accurate but few short-term measurements. Both strong overestimates and underestimates are possible. High-resolution monitoring over at least one tidal cycle as with the GasQuant system might help to get an idea of the temporal variability. Thus flux extrapolations can be corrected to better reflect the real seep activity. |