European Ocean Biodiversity Information System

[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [298101]
Seagrass organic matter transfer in Posidonia oceanica macrophytodetritus accumulations
Remy, F.; Mascart, T.; De Troch, M.; Michel, L.N. (2018). Seagrass organic matter transfer in Posidonia oceanica macrophytodetritus accumulations. Est., Coast. and Shelf Sci. 212: 73-79. https://dx.doi.org/10.1016/j.ecss.2018.07.001
In: Estuarine, Coastal and Shelf Science. Academic Press: London; New York. ISSN 0272-7714; e-ISSN 1096-0015
Peer reviewed article  

Available in  Authors 
    Vlaams Instituut voor de Zee: Non-open access 315518 [ request ]

Keywords
    Posidonia oceanica (Linnaeus) Delile, 1813 [WoRMS]
    Marine/Coastal
Author keywords
    Stable isotopes; Detrital pathway; Mixing models; Trophic level; Invertebrates; Mediterranean Sea; Food web

Authors  Top 
  • Remy, F.
  • Mascart, T.
  • De Troch, M.
  • Michel, L.N.

Abstract
    Seagrass ecosystems are net autotrophic systems which contribute to organic carbon burial in marine sediment. Dead seagrass leaves are often exported outside the seagrass beds and may form accumulations (exported macrophytodetritus accumulations, hereafter EMAs) from littoral zones to deepest canyons. Understanding how seagrass organic matter is channeled in its associated trophic web is necessary to assess the role of the seagrass ecosystem as blue carbon service providers. We used gut content and stable isotope analyses to delineate the Posidonia oceanica EMA food web structure and to determine the importance of detrital material in the diets of macrofauna. Evidence from gut contents and stable isotopes showed that this food web is fuelled mainly by two food sources found in the detritus accumulations: 1) P. oceanica detritus itself and 2) epiphytes and drift macroalgae. Dead leaves of P. oceanica enter the diet of dominant species, representing more than 60% of animal abundance. The food web is structured in five trophic levels with a numerical dominance of detritivore/herbivore species at the first consumer level. Animals act as a vector for seagrass organic matter transfer to upper trophic levels and this “dead seagrass signal” is followed through the entire food web. Seagrass primary production and seagrass organic matter processing by animals are spatially decoupled and this should be taken into account in assessments of seagrass ecosystems as key actors in C cycles in coastal areas.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors