European Ocean Biodiversity Information System

[ report an error in this record ]basket (0): add | show Print this page

Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss
Danovaro, R.; Gambi, M.C.; Dell'Anno, A.; Corinaldesi, C.; Fraschetti, S.; Vanreusel, A.; Vincx, M.; Gooday, A.J. (2008). Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr. Biol. 18(1): 1-8 + supplemental data: S1-S6; 1-16. dx.doi.org/10.1016/j.cub.2007.11.056
In: Current Biology. Cell Press: London. ISSN 0960-9822; e-ISSN 1879-0445
Peer reviewed article  

Available in  Authors 
    Vlaams Instituut voor de Zee: MarBEF Open Archive 130615 [ download pdf ]

Keywords
    Aquatic communities > Benthos
    Biodiversity
    Deterioration
    Ecosystem disturbance
    Water > Deep water
    Marine/Coastal

Authors  Top 
  • Danovaro, R.
  • Gambi, M.C.
  • Dell'Anno, A.
  • Corinaldesi, C.
  • Fraschetti, S.
  • Vanreusel, A.
  • Vincx, M.
  • Gooday, A.J.

Abstract
    BackgroundRecent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking.ResultsHere, we present a global-scale study based on 116 deep-sea sites that relates benthic biodiversity to several independent indicators of ecosystem functioning and efficiency. We show that deep-sea ecosystem functioning is exponentially related to deep-sea biodiversity and that ecosystem efficiency is also exponentially linked to functional biodiversity. These results suggest that a higher biodiversity supports higher rates of ecosystem processes and an increased efficiency with which these processes are performed. The exponential relationships presented here, being consistent across a wide range of deep-sea ecosystems, suggest that mutually positive functional interactions (ecological facilitation) can be common in the largest biome of our biosphere.ConclusionsOur results suggest that a biodiversity loss in deep-sea ecosystems might be associated with exponential reductions of their functions. Because the deep sea plays a key role in ecological and biogeochemical processes at a global scale, this study provides scientific evidence that the conservation of deep-sea biodiversity is a priority for a sustainable functioning of the worlds' oceans.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors