In recent years, acoustic-based methods have been developed to characterize the dynamical behavior of loose sediments and bed deposits in very shallow water environments. In this paper, we present preliminary results on the estimation of the dynamic changes in an estuarine environment using data from dual-frequency echosounding at high resolution and contemporaneous hydrological measurements including suspended matter concentration, density subbottom profiling, and data assimilation based on a sediment transport model. Those measurements are being conducted in the lower estuary of the Scheldt (Belgium) at the Sint Anna site where strong tide and season-dependent phenomena can be observed. This allows us to construct a ground-truthed, time-dependent geoacoustic model of the environment, i.e., a characterization of sound speed, density, and attenuation in function of time and depth. Synthetic acoustic data generated by that model will then be used to test inversion methods for monitoring sediment dynamics in real time. |