Assessing population genetic structure is a crucial step to support fisheries and conservation management. DNA microsatellite molecular markers are a widely used tool in population genotyping. In the present study, we characterised and developed 14 novel polymorphic microsatellite markers for a decapod crustacean, the Atlantic seabob shrimp Xiphopenaeus kroyeri (Heller, 1862), through rapid and cost-effective Illumina shotgun sequencing and a Galaxy-based bioinformatic pipeline. We genotyped 60 individuals from 2 populations with the newly developed microsatellites, resulting in the detection of 3 to 29 alleles per locus. Four loci deviated from Hardy–Weinberg equilibrium. Cross-amplification in a cryptic congeneric species was successful for eight loci (57%). The microsatellite loci developed in this study will be highly relevant for genetic and evolutionary studies of X. kroyeri, and for the stock management of this commercially exploited species. |