BackgroundIn acoustic telemetry studies, detection range is usually evaluated as the relationship between the probability of detecting an individual transmission and the distance between the transmitter and receiver. When investigating animal presence, however, few detections will suffice to establish an animal’s presence within a certain time frame. In this study, we assess detection range and its impacting factors with a novel approach aimed towards studies making use of binary presence/absence metrics. The probability of determining presence of an acoustic transmitter within a certain time frame is calculated as the probability of detecting a set minimum number of transmissions within that time frame. We illustrate this method for hourly and daily time bins with an extensive empirical dataset of sentinel transmissions and detections in a receiver array in a Belgian offshore wind farm.ResultsThe accuracy and specificity of over 84% for both temporal resolutions showed the developed approach performs adequately. Using this approach, we found important differences in the predictive performance of distinct hypothetical range testing scenarios. Finally, our results demonstrated that the probability of determining presence over distance to a receiver did not solely depend on environmental and technical conditions, but would also relate to the temporal resolution of the analysis, the programmed transmitting interval and the movement behaviour of the tagged animal. The probability of determining presence differed distinctly from a single transmission’s detectability, with an increase of up to 266 m for the estimated distance at 50% detection probability (D50).ConclusionWhen few detections of multiple transmissions suffice to ascertain presence within a time bin, predicted range differs distinctly from the probability of detecting a single transmission within that time bin. We recommend the use of more rigorous range testing methodologies for acoustic telemetry applications where the assessment of detection range is an integral part of the study design, the data analysis and the interpretation of results.
|