European Ocean Biodiversity Information System

[ report an error in this record ]basket (0): add | show Print this page

Tracing timing of growth in cultured molluscs using strontium spiking
de Winter, N.J.; van Sikkeleras, S.; Goudsmit-Harzevoort, B.; Boer, W.; de Nooijer, L.; Reichart, G.-J.; Claeys, P.; Witbaard, R. (2023). Tracing timing of growth in cultured molluscs using strontium spiking. Front. Mar. Sci. 10: 1157929. https://dx.doi.org/10.3389/fmars.2023.1157929
In: Frontiers in Marine Science. Frontiers Media: Lausanne. e-ISSN 2296-7745
Peer reviewed article  

Available in  Authors 

Keywords
    Cerastoderma edule (Linnaeus, 1758) [WoRMS]; Mollusca [WoRMS]; Mytilus edulis Linnaeus, 1758 [WoRMS]; Ostrea edulis Linnaeus, 1758 [WoRMS]
    Marine/Coastal
Author keywords
    mollusk (mollusc); growth experiment; trace element; shell; proxy development

Authors  Top 
  • de Winter, N.J.
  • van Sikkeleras, S.
  • Goudsmit-Harzevoort, B.
  • Boer, W.
  • de Nooijer, L.
  • Reichart, G.-J.
  • Claeys, P.
  • Witbaard, R.

Abstract
    Introduction: Growth experiments present a powerful tool for determining the effect of environmental parameters on growth and carbonate composition in biogenic calcifiers. For successful proxy calibration and biomineralization studies, it is vital to identify volumes of carbonate precipitated by these organisms at precise intervals during the experiment. Here, we investigate the use of strontium labelling in mollusc growth experiments.Methods: Three bivalve species (Cerastoderma edule, Mytilus edulis and Ostrea edulis) were grown under monitored field conditions. The bivalves were regularly exposed to seawater with elevated concentrations of dissolved strontium chloride (SrCl2). In addition, the size of their shells was determined at various stages during the experiment using calliper measurements and digital photography. Trace element profiles were measured in cross sections through the shells of these molluscs using laser ablation ICPMS and XRF techniques.Results: Our results show that doses of dissolved strontium equivalent to 7-8 times the background marine value (~0.6 mmol/L) are sufficient to cause reproducible peaks in shell-incorporated strontium in C. edule and M. edulis shells. No negative effects were observed on shell calcification rates. Lower doses (3-5 times background values) resulted in less clearly identifiable peaks, especially in M. edulis. Strontium spiking labels in shells of O. edulis are more difficult to detect, likely due to their irregular growth.Discussion: Strontium spiking is a useful technique for creating time marks in cultured shells and a reproducible way to monitor shell size during the growing season while limiting physical disturbance of the animals. However, accurate reconstructions of growth rates at high temporal resolution require frequent spiking with high doses of strontium.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors