European Ocean Biodiversity Information System

[ report an error in this record ]basket (0): add | show Print this page

Biogeochemical‐argo floats reveal stark latitudinal gradient in the Southern Ocean deep carbon flux driven by phytoplankton community composition
Terrats, L.; Claustre, H.; Briggs, N.; Poteau, A.; Briat, B.; Lacour, L.; Ricour, F.; Mangin, A.; Neukermans, G. (2023). Biogeochemical‐argo floats reveal stark latitudinal gradient in the Southern Ocean deep carbon flux driven by phytoplankton community composition. Global Biogeochem. Cycles 37(11): 1-28. https://dx.doi.org/10.1029/2022gb007624
In: Global Biogeochemical Cycles. American Geophysical Union: Washington, DC. ISSN 0886-6236; e-ISSN 1944-9224
Peer reviewed article  

Available in  Authors 
    Vlaams Instituut voor de Zee: Open access 395314 [ download pdf ]

Authors  Top 
  • Terrats, L.
  • Claustre, H.
  • Briggs, N.
  • Poteau, A.
  • Briat, B.
  • Lacour, L.
  • Ricour, F.
  • Mangin, A.
  • Neukermans, G.

Abstract
    The gravitational sinking of particles in the mesopelagic layer (∼200–1,000 m) transfers to the deep ocean a part of atmospheric carbon fixed by phytoplankton. This process, called the gravitational pump, exerts an important control on atmospheric CO2 levels but remains poorly characterized given the limited spatio-temporal coverage of ship-based flux measurements. Here, we examined the gravitational pump with BioGeoChemical-Argo floats in the Southern Ocean, a critically under-sampled area. Using time-series of bio-optical measurements, we characterized the concentration of particles in the productive zone, their export and transfer efficiency in the underlying mesopelagic zone, and the magnitude of sinking flux at 1,000 m. We separated float observations into six environments delineated by latitudinal fronts, sea-ice coverage, and natural iron fertilization. Results show a significant increase in the sinking-particle flux at 1,000 m with increasing latitude, despite comparable particle concentrations in the productive layer. The variability in deep flux was driven by changes in the transfer efficiency of the flux, related to the composition of the phytoplanktonic community and the size of particles, with intense flux associated with the predominance of micro-phytoplankton and large particles at the surface. We quantified the relationships between the nature of surface particles and the flux at 1,000 m and used these results to upscale our flux survey across the whole Southern Ocean using surface observations by floats and satellites. We then estimated the basin-wide Spring-Summer flux of sinking particles at 1,000 m over the Southern Ocean (0.054 ± 0.021 Pg C).

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors